
RADemics

Integration of
Python with
Raspberry Pi and
Arduino for AI
Based Physical
Automation

Sneha. R, Shrishailappa Patil, Shaik
Mabasha
SRI RAMAKRISHNA COLLEGE OF ARTS AND SCIENCE
FOR WOMEN, WALCHAND INSTITUTE OF
TECHNOLOGY, VNR VIGNANA JYOTHI INSTITUTE OF
ENGINEERING AND TECHNOLOGY

Integration of Python with Raspberry Pi and

Arduino for AI Based Physical Automation
1Sneha. R, Assistant Professor, Computer Science, Sri Ramakrishna College of arts and Science

for Women, Mail id: sneharajesh642@gmail.com , Mobile number: 824 800 2831.

2Shrishailappa Patil, Professor, Computer, Walchand Institute of Technology, Solapur, Mail id:

stpatil72@gmail.com , Mobile number: 93615 95146.

3Shaik Mabasha, Assistant Professor, Dept. of CSE (AIML&IoT), VNR Vignana Jyothi

Institute of Engineering and Technology, Hyderabad,500090. Mail ID: mabaskvyec@gmail.com,

Mobile No: 824 800 2831.

Abstract

The convergence of artificial intelligence (AI) with embedded hardware platforms has

catalyzed significant advancements in physical automation, enabling intelligent and adaptive

control in diverse applications. This chapter presents a comprehensive exploration of the

integration of Python programming with Raspberry Pi and Arduino microcontroller architectures

to develop efficient AI-driven automation systems. The hybrid framework leverages Python’s

versatility to orchestrate real-time data acquisition, AI inference, and hardware actuation,

addressing the inherent computational and communication challenges of edge-based automation.

Emphasis is placed on designing modular architectures that facilitate seamless interfacing, low-

latency decision-making, and robust error handling, ensuring system reliability and scalability.

Case studies encompassing smart home automation, industrial robotics, and environmental

monitoring illustrate practical implementations and performance considerations. The chapter

discusses optimization strategies for deploying lightweight AI models on resource-constrained

devices and the use of multi-threaded, event-driven programming paradigms to enhance system

responsiveness. The findings provide critical insights for researchers and practitioners aiming to

harness Python’s rich ecosystem in developing next-generation intelligent physical automation

solutions.

Keywords: Artificial Intelligence, Embedded Systems, Python Programming, Raspberry Pi,

Arduino, Physical Automation

Introduction

The rapid advancement of embedded computing and artificial intelligence (AI) technologies

has transformed the landscape of physical automation across industrial, commercial, and domestic

environments [1]. Intelligent automation systems are increasingly expected to perform complex

tasks such as perception, decision-making, and real-time control autonomously [2]. This shift has

been driven by the need for greater operational efficiency, precision, and adaptability in dynamic

conditions. Central to this evolution is the integration of flexible programming frameworks with

robust hardware platforms capable of running AI algorithms at the edge, near the source of data

generation [3]. Among such platforms, the Raspberry Pi and Arduino ecosystems have garnered

mailto:sneharajesh642@gmail.com
mailto:stpatil72@gmail.com
mailto:mabaskvyec@gmail.com

significant attention due to their affordability, accessibility, and extensive community support.

Python, a versatile and widely adopted programming language, serves as an effective interface for

coordinating AI inference, sensor data acquisition, and actuator control in these embedded systems

[4]. This chapter explores the methodologies and design principles that facilitate the seamless

integration of Python with Raspberry Pi and Arduino, focusing on the realization of intelligent

physical automation systems [5].

The architecture of modern automation systems demands the coordination of diverse hardware

components and software modules, often requiring heterogeneous processing capabilities [6].

Raspberry Pi, as a single-board computer running a full-fledged Linux operating system, provides

computational power sufficient for running AI models, handling network communications, and

performing complex data processing tasks [7]. In contrast, Arduino microcontrollers excel at low-

level sensor interfacing and precise timing control, albeit with limited processing resources.

Integrating these platforms effectively necessitates the use of efficient communication protocols

and middleware that bridge high-level AI-driven decision-making with real-time actuation

commands [8]. Python plays a pivotal role by offering extensive libraries for hardware abstraction,

serial communication, and AI model deployment, thereby enabling developers to build scalable

and modular automation workflows [9]. This integration addresses critical challenges such as

minimizing latency, ensuring synchronization, and maintaining robustness across system

components [10].

Deploying AI models on embedded hardware introduces constraints related to processing

power, memory, and energy consumption [11]. Consequently, AI algorithms must be optimized

for edge deployment without sacrificing accuracy or responsiveness [12]. Frameworks like

TensorFlow Lite and PyTorch Mobile have made significant strides in facilitating lightweight

model execution on Raspberry Pi, allowing real-time tasks such as object detection, anomaly

detection, and predictive maintenance [13]. Python’s rich ecosystem supports these frameworks

and provides additional tools for data preprocessing, feature extraction, and post-inference control

logic implementation. The combination of these capabilities enables automation systems to make

intelligent decisions locally, reducing dependence on cloud services and improving privacy and

security [14]. Hybrid system designs incorporating Arduino for real-time sensor data acquisition

and Raspberry Pi for AI inference leverage the strengths of each platform, achieving a balanced

trade-off between responsiveness and computational complexity [15].

